Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1331210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464529

RESUMEN

Introduction: Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods: Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion: Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.


Asunto(s)
Vesículas Extracelulares , Microglía , Ratas , Animales , Humanos , Microglía/metabolismo , Endocannabinoides/metabolismo , Macrófagos , Oligodendroglía/metabolismo
2.
Mol Ther ; 29(4): 1439-1458, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33309882

RESUMEN

Contrasting myelin damage through the generation of new myelinating oligodendrocytes represents a promising approach to promote functional recovery after stroke. Here, we asked whether activation of microglia and monocyte-derived macrophages affects the regenerative process sustained by G protein-coupled receptor 17 (GPR17)-expressing oligodendrocyte precursor cells (OPCs), a subpopulation of OPCs specifically reacting to ischemic injury. GPR17-iCreERT2:CAG-eGFP reporter mice were employed to trace the fate of GPR17-expressing OPCs, labeled by the green fluorescent protein (GFP), after permanent middle cerebral artery occlusion. By microglia/macrophages pharmacological depletion studies, we show that innate immune cells favor GFP+ OPC reaction and limit myelin damage early after injury, whereas they lose their pro-resolving capacity and acquire a dystrophic "senescent-like" phenotype at later stages. Intracerebral infusion of regenerative microglia-derived extracellular vesicles (EVs) restores protective microglia/macrophages functions, limiting their senescence during the post-stroke phase, and enhances the maturation of GFP+ OPCs at lesion borders, resulting in ameliorated neurological functionality. In vitro experiments show that EV-carried transmembrane tumor necrosis factor (tmTNF) mediates the pro-differentiating effects on OPCs, with future implications for regenerative therapies.


Asunto(s)
Senescencia Celular/genética , Vaina de Mielina/genética , Receptores Acoplados a Proteínas G/genética , Accidente Cerebrovascular/terapia , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/terapia , Macrófagos/metabolismo , Macrófagos/trasplante , Masculino , Ratones , Microglía/metabolismo , Microglía/trasplante , Oligodendroglía/trasplante , Medicina Regenerativa/métodos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Factor de Necrosis Tumoral alfa/genética
3.
PLoS One ; 15(4): e0231483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32320409

RESUMEN

The GPR17 receptor, expressed on oligodendroglial precursors (OPCs, the myelin producing cells), has emerged as an attractive target for a pro-myelinating strategy in multiple sclerosis (MS). However, the proof-of-concept that selective GPR17 ligands actually exert protective activity in vivo is still missing. Here, we exploited an iterative drug discovery pipeline to prioritize novel and selective GPR17 pro-myelinating agents out of more than 1,000,000 compounds. We first performed an in silico high-throughput screening on GPR17 structural model to identify three chemically-diverse ligand families that were then combinatorially exploded and refined. Top-scoring compounds were sequentially tested on reference pharmacological in vitro assays with increasing complexity, ending with myelinating OPC-neuron co-cultures. Successful ligands were filtered through in silico simulations of metabolism and pharmacokinetics, to select the most promising hits, whose dose and ability to target the central nervous system were then determined in vivo. Finally, we show that, when administered according to a preventive protocol, one of them (named by us as galinex) is able to significantly delay the onset of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. This outcome validates the predictivity of our pipeline to identify novel MS-modifying agents.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Simulación por Computador , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ratas
4.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244295

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons (MN). Importantly, MN degeneration is intimately linked to oligodendrocyte dysfunction and impaired capacity of oligodendrocyte precursor cells (OPCs) to regenerate the myelin sheath enwrapping and protecting neuronal axons. Thus, improving OPC reparative abilities represents an innovative approach to counteract MN loss. A pivotal regulator of OPC maturation is the P2Y-like G protein-coupled receptor 17 (GPR17), whose role in ALS has never been investigated. In other models of neurodegeneration, an abnormal increase of GPR17 has been invariably associated to myelin defects and its pharmacological manipulation succeeded in restoring endogenous remyelination. Here, we analyzed GPR17 alterations in the SOD1G93A ALS mouse model and assessed in vitro whether this receptor could be targeted to correct oligodendrocyte alterations. Western-blot and immunohistochemical analyses showed that GPR17 protein levels are significantly increased in spinal cord of ALS mice at pre-symptomatic stage; this alteration is exacerbated at late symptomatic phases. Concomitantly, mature oligodendrocytes degenerate and are not successfully replaced. Moreover, OPCs isolated from spinal cord of SOD1G93A mice display defective differentiation compared to control cells, which is rescued by treatment with the GPR17 antagonist montelukast. These data open novel therapeutic perspectives for ALS management.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Vaina de Mielina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Médula Espinal/metabolismo , Regulación hacia Arriba
5.
Acta Neuropathol ; 138(6): 987-1012, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31363836

RESUMEN

Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.


Asunto(s)
Astrocitos/fisiología , Enfermedades Desmielinizantes/fisiopatología , Vesículas Extracelulares/fisiología , Microglía/fisiología , Vaina de Mielina/fisiología , Remielinización/fisiología , Animales , Astrocitos/patología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Técnicas de Cocultivo , Cuerpo Calloso/patología , Cuerpo Calloso/fisiopatología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/patología , Inflamación/patología , Inflamación/fisiopatología , Lisofosfatidilcolinas , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones Endogámicos C57BL , Microglía/patología , Vaina de Mielina/patología , Neuroprotección/fisiología , Células Precursoras de Oligodendrocitos/patología , Células Precursoras de Oligodendrocitos/fisiología , Ratas Sprague-Dawley
6.
Pharmacol Res ; 142: 223-236, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30818044

RESUMEN

Stroke is one of the main causes of death, neurological dysfunctions or disability in elderly. Neuroprotective drugs have been proposed to improve long-term recovery after stroke, but failed to reach clinical effectiveness. Hence, recent studies suggested that restorative therapies should combine neuroprotection and remyelination. Montelukast, an anti-asthmatic drug, was shown to exert neuroprotection in animal models of CNS injuries, but its ability to affect oligodendrocytes, restoring fiber connectivity, remains to be determined. In this study, we evaluated whether montelukast induces long-term repair by promoting fiber connectivity up to 8 weeks after middle cerebral artery occlusion (MCAo), using different experimental approaches such as in vivo diffusion magnetic resonance imaging (MRI), electrophysiological techniques, ex vivo diffusion tensor imaging (DTI)-based fiber tracking and immunohistochemistry. We found that, in parallel with a reduced evolution of ischemic lesion and atrophy, montelukast increased the DTI-derived axial diffusivity and number of myelin fibers, the density of myelin binding protein (MBP) and the number of GSTpi+ mature oligodendrocytes. Together with the rescue of MCAo-induced impairments of local field potentials in ischemic cortex, the data suggest that montelukast may improve fibers reorganization. Thus, to ascertain whether this effect involved changes of oligodendrocyte precursor cells (OPCs) activation and maturation, we used the reporter GPR17iCreERT2:CAG-eGreen florescent protein (GFP) mice that allowed us to trace the fate of OPCs throughout animal's life. Our results showed that montelukast enhanced the OPC recruitment and proliferation at acute phase, and increased their differentiation to mature oligodendrocytes at chronic phase after MCAo. Considering the crosstalk between OPCs and microglia has been widely reported in the context of demyelinating insults, we also assessed microglia activation. We observed that montelukast influenced the phenotype of microglial cells, increasing the number of M2 polarized microglia/macrophages, over the M1 phenotype, at acute phase after MCAo. In conclusion, we demonstrated that montelukast improves fiber re-organization and long-term functional recovery after brain ischemia, enhancing recruitment and maturation of OPCs. The present data suggest that montelukast, an already approved drug, could be "repositioned "as a protective drug in stroke acting also on fiber re-organization.


Asunto(s)
Acetatos/uso terapéutico , Antiasmáticos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Quinolinas/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ciclopropanos , Infarto de la Arteria Cerebral Media/fisiopatología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Microglía/efectos de los fármacos , Accidente Cerebrovascular/fisiopatología , Sulfuros
7.
Front Chem ; 7: 910, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998697

RESUMEN

The aim of this study was to investigate the potential of surface plasmon resonance (SPR) spectroscopy for the measurement of real-time ligand-binding affinities and kinetic parameters for GPR17, a G protein-coupled receptor (GPCR) of major interest in medicinal chemistry as potential target in demyelinating diseases. The receptor was directly captured, in a single-step, from solubilized membrane extracts on the sensor chip through a covalently bound anti-6x-His-antibody and retained its ligand binding activity for over 24 h. Furthermore, our experimental setup made possible, after a mild regeneration step, to remove the bound receptor without damaging the antibody, and thus to reuse many times the same chip. Two engineered variants of GPR17, designed for crystallographic studies, were expressed in insect cells, extracted from crude membranes and analyzed for their binding with two high affinity ligands: the antagonist Cangrelor and the agonist Asinex 1. The calculated kinetic parameters and binding constants of ligands were in good agreement with those reported from activity assays and highlighted a possible functional role of the N-terminal residues of the receptor in ligand recognition and binding. Validation of SPR results was obtained by docking and molecular dynamics of GPR17-ligands interactions and by functional in vitro studies. The latter allowed us to confirm that Asinex 1 behaves as GPR17 receptor agonist, inhibits forskolin-stimulated adenylyl cyclase pathway and promotes oligodendrocyte precursor cell maturation and myelinating ability.

8.
Front Pharmacol ; 8: 703, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075188

RESUMEN

Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

9.
Cell Death Dis ; 8(6): e2871, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28594400

RESUMEN

Following stroke-induced neuronal damage, quiescent oligodendrocyte precursors (OPCs) are activated to proliferate and later to differentiate to myelin-producing cells. GPR17, a receptor transiently expressed on early OPCs, has emerged as a target to implement stroke repair through stimulation of OPC maturation. However, being GPR17 completely downregulated in myelin-producing oligodendrocytes, its actual role in determining the final fate of OPCs after cerebral ischemia is still uncertain. Here, to univocally define the spatiotemporal changes and final fate of GPR17-expressing OPCs, we induced ischemia by middle cerebral artery occlusion (MCAo) in reporter GPR17iCreERT2:CAG-eGreen florescent protein (GFP) mice, in which, upon tamoxifen treatment, cells expressing GPR17 become green and traceable for their entire life. Starting from 3 days and up to 2 weeks after MCAo, GFP+ cells markedly accumulated in regions surrounding the ischemic lesion; several of them proliferated, as shown by co-labeling of the DNA synthesis marker 5-Bromo-2'-deoxyuridine (BrdU). Almost all GFP+/BrdU+ cells expressed the OPC early marker neural/glial antigen 2 (NG2), indicating that they were still precursors. Accumulation of GFP+ cells was also because of OPC recruitment from surrounding areas, as suggested in vivo by acquisition of typical features of migrating OPCs, shown in vitro in presence of the chemoattractant PDGF-AA and confirmed by transplantation of GFP+-OPCs in wild-type MCAo mice. Eight weeks after MCAo, only some of these precociously recruited cells had undergone maturation as shown by NG2 loss and acquisition of mature myelinating markers like GSTpi. A pool of recruited GFP+-OPCs was kept at a precursor stage to likely make it available for further insults. Thus, very early after ischemia, GFP+-OPCs proliferate and migrate toward the lesion; however, most of these cells remain undifferentiated, suggesting functional roles other than myelination.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Células Madre/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Antígenos/genética , Antígenos/metabolismo , Encéfalo/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Oligodendroglía/patología , Proteoglicanos/genética , Proteoglicanos/metabolismo , Receptores Acoplados a Proteínas G/genética , Células Madre/patología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
10.
Glia ; 64(2): 287-99, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26464068

RESUMEN

In the adult brain NG2-glia continuously generate mature, myelinating oligodendrocytes. To which extent the differentiation process is common to all NG2-glia and whether distinct pools are recruited for repair under physiological and pathological conditions still needs clarification. Here, we aimed at investigating the differentiation potential of adult NG2-glia that specifically express the G-protein coupled receptor 17 (GPR17), a membrane receptor that regulates the differentiation of these cells at postnatal stages. To this aim, we generated the first BAC transgenic GPR17-iCreER(T2) mouse line for fate mapping studies. In these mice, under physiological conditions, GPR17(+) cells--in contrast to GPR17(-) NG2-glia--did not differentiate within 3 months, a peculiarity that was overcome after cerebral damage induced by acute injury or ischemia. After these insults, GPR17(+) NG2-glia rapidly reacted to the damage and underwent maturation, suggesting that they represent a 'reserve pool' of adult progenitors maintained for repair purposes.


Asunto(s)
Antígenos/metabolismo , Lesiones Encefálicas/fisiopatología , Isquemia Encefálica/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Proteoglicanos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Encéfalo/patología , Encéfalo/fisiología , Encéfalo/fisiopatología , Lesiones Encefálicas/patología , Isquemia Encefálica/patología , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Infarto de la Arteria Cerebral Media , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/patología , Neurogénesis/fisiología , Oligodendroglía/patología , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
11.
Glia ; 63(12): 2327-39, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26228571

RESUMEN

During oligodendrocyte precursor cell (OPC) differentiation, defective control of the membrane receptor GPR17 has been suggested to block cell maturation and impair remyelination under demyelinating conditions. After the immature oligodendrocyte stage, to enable cells to complete maturation, GPR17 is physiologically down-regulated via phosphorylation/desensitization by G protein-coupled receptor kinases (GRKs); conversely, GRKs are regulated by the "mammalian target of rapamycin" mTOR. However, how GRKs and mTOR are connected to each other in modulating GPR17 function and oligodendrogenesis has remained elusive. Here we show, for the first time, a role for Murine double minute 2 (Mdm2), a ligase previously involved in ubiquitination/degradation of the onco-suppressor p53 protein. In maturing OPCs, both rapamycin and Nutlin-3, a small molecule inhibitor of Mdm2-p53 interactions, increased GRK2 sequestration by Mdm2, leading to impaired GPR17 down-regulation and OPC maturation block. Thus, Mdm2 intertwines mTOR with GRK2 in regulating GPR17 and oligodendrogenesis and represents a novel actor in myelination.


Asunto(s)
Oligodendroglía/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Animales , Células Cultivadas , Fármacos del Sistema Nervioso Central/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Imidazoles/farmacología , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Piperazinas/farmacología , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
12.
Cell Signal ; 26(6): 1310-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24613411

RESUMEN

During oligodendrocyte-precursor cell (OPC) differentiation program, an impairment in the regulatory mechanisms controlling GPR17 spatio-temporal expression and functional activity has been suggested to contribute to defective OPC maturation, a crucial event in the pathogenesis of multiple sclerosis. GRK-ß arrestin machinery is the primary actor in the control of G-protein coupled receptor (GPCR) functional responses and changes in these regulatory protein activities have been demonstrated in several immune/inflammatory diseases. Herein, in order to shed light on the molecular mechanisms controlling GPR17 regulatory events during cell differentiation, the role of GRK/ß-arrestin machinery in receptor desensitization and signal transduction was investigated, in transfected cells and primary OPC. Following cell treatment with the two classes of purinergic and cysteinyl-leukotriene (cysLT) ligands, different GRK isoforms were recruited to regulate GPR17 functional responses. CysLT-mediated receptor desensitization mainly involved GRK2; this kinase, via a G protein-dependent mechanism, promoted a transient binding of the receptor to ß-arrestins, rapid ERK phosphorylation and sustained nuclear CREB activation. Furthermore, GRK2, whose expression parallels that of the receptor during differentiation process, appeared to be crucial to induce cysLT-mediated maturation of OPCs. On the other hand, purinergic ligand exclusively recruited the GRK5 subtype, and induced, via a G protein-independent/ß-arrestin-dependent mechanism, a receptor/ß-arrestin stable association, slower and sustained ERK stimulation and marginal CREB activation. These results show that purinergic and cysLT ligands, through the recruitment of specific GRK isoforms, address distinct intracellular pathways, most likely reinforcing the same final response. The identification of these mechanisms and players controlling GPR17 responses during OPC differentiation could be useful to identify new targets in demyelination diseases and to develop new therapeutical strategies.


Asunto(s)
Arrestinas/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Animales , Diferenciación Celular , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Oligodendroglía/fisiología , Fosforilación , Cultivo Primario de Células , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , beta-Arrestinas
13.
Glia ; 61(7): 1155-71, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640798

RESUMEN

In the developing and mature central nervous system, NG2 expressing cells comprise a population of cycling oligodendrocyte progenitor cells (OPCs) that differentiate into mature, myelinating oligodendrocytes (OLGs). OPCs are also characterized by high motility and respond to injury by migrating into the lesioned area to support remyelination. K(+) currents in OPCs are developmentally regulated during differentiation. However, the mechanisms regulating these currents at different stages of oligodendrocyte lineage are poorly understood. Here we show that, in cultured primary OPCs, the purinergic G-protein coupled receptor GPR17, that has recently emerged as a key player in oligodendrogliogenesis, crucially regulates K(+) currents. Specifically, receptor stimulation by its agonist UDP-glucose enhances delayed rectifier K(+) currents without affecting transient K(+) conductances. This effect was observed in a subpopulation of OPCs and immature pre-OLGs whereas it was absent in mature OLGs, in line with GPR17 expression, that peaks at intermediate phases of oligodendrocyte differentiation and is thereafter downregulated to allow terminal maturation. The effect of UDP-glucose on K(+) currents is concentration-dependent, blocked by the GPR17 antagonists MRS2179 and cangrelor, and sensitive to the K(+) channel blocker tetraethyl-ammonium, which also inhibits oligodendrocyte maturation. We propose that stimulation of K(+) currents is responsible for GPR17-induced oligodendrocyte differentiation. Moreover, we demonstrate, for the first time, that GPR17 activation stimulates OPC migration, suggesting an important role for this receptor after brain injury. Our data indicate that modulation of GPR17 may represent a strategy to potentiate the post-traumatic response of OPCs under demyelinating conditions, such as multiple sclerosis, stroke, and brain trauma.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Uridina Difosfato Glucosa/farmacología , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Animales , Animales Recién Nacidos , Antígenos/metabolismo , Encéfalo/citología , Calcio/metabolismo , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Proteoglicanos/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Células Madre , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...